Overview of Assessment, Evaluation & Reporting in Ontario Schools

Ann Arden, Curriculum Services
ann.arden@ocdsb.ca

“The primary purpose of assessment and evaluation is to improve student learning.”

OME, 2010, p.6
The Seven Fundamental Principles

To ensure that assessment, evaluation, and reporting are valid and reliable, and that they lead
to the improvement of learning for all students, teachers use practices and procedures that:

- are fair, transparent, and equitable for all students;
- support all students, including those with special education needs, those who are learning the
 language of instruction (English or French), and those who are First Nation, Métis, or Inuit;
- are carefully planned to relate to the curriculum expectations and learning goals and, as much
 as possible, to the interests, learning styles and preferences, needs, and experiences of all students;
- are communicated clearly to students and parents at the beginning of the school year or course
 and at other appropriate points throughout the school year or course;
- are ongoing, varied in nature, and administered over a period of time to provide multiple
 opportunities for students to demonstrate the full range of their learning;
- provide ongoing descriptive feedback that is clear, specific, meaningful, and timely to support
 improved learning and achievement;
- develop students’ self-assessment skills to enable them to assess their own learning, set specific
 goals, and plan next steps for their learning.

OME, 2010, p.6

Learning Skills & Work Habits

- Responsibility
- Organization
- Independent work
- Collaboration
- Initiative
- Self Regulation

OME, 2010, pp.12-13
Content & Performance Standards

Measurement and Geometry

Overall Expectations
By the end of this course, students will:
• determine, through investigation, the optimal values of various measurements;
• solve problems involving the measurements of two-dimensional shapes and the surface areas and volumes of three-dimensional figures;
• verify, through investigation facilitated by dynamic geometry software, geometric properties and relationships involving two-dimensional shapes, and apply the results to solving problems.

Specific Expectations
Investigating the Optimal Values of Measurements
By the end of this course, students will:
– determine the maximum area of a rectangle with a given perimeter by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, toothpicks, a pre-made dynamic geometry sketch); and by examining various values of the area as the side lengths change and the perimeter remains constant;
– determine the minimum perimeter of a rectangle with a given area by constructing a variety of rectangles, using a variety of tools (e.g., geoboards, graph paper, a pre-made dynamic geometry sketch); and by examining various values of the perimeter as the area remains constant.

Solving Problems Involving Perimeter, Area, Surface Area, and Volume
By the end of this course, students will:
– relate the geometric representation of the Pythagorean theorem and the algebraic representation \(a^2 + b^2 = c^2 \);
– solve problems using the Pythagorean theorem.

Content & Performance Standards

The categories of knowledge and skills are as follows:

• **Knowledge and Understanding:** Subject-specific content acquired in each grade/course (knowledge), and the comprehension of its meaning and significance (understanding)

• **Thinking:** The use of critical and creative thinking skills and/or processes

• **Communication:** The conveying of meaning through various forms

• **Application:** The use of knowledge and skills to make connections within and between various contexts

OME, 2010, p.17
Criterion-referenced Assessment and Evaluation

Ontario, like a number of other jurisdictions, has moved from norm-referenced to criterion-referenced assessment and evaluation. This means that teachers assess and evaluate student work with reference to established criteria for four levels of achievement that are standard across the province, rather than by comparison with work done by other students, or through the ranking of student performance, or with reference to performance standards developed by individual teachers for their own classrooms. (There is no expectation that a certain number or percentage of students must be allocated to any one level of achievement.)

"Solve problems involving similar triangles in realistic situations (e.g. shadows, reflections, scale models, surveying). Sample problem: Use a metre stick to determine the height of a tree, by means of the similar triangles formed by the tree, the metre stick and their shadows)" MPM2D

"Apply the creative process when performing notated and/or improvised music" AMU1O

"Conduct inquiries, controlling some variables, adapting or extending procedures as required, and using standard equipment and materials safely, accurately, and effectively, to collect observations and data" SNC1D
“In all subjects and courses, students should be given numerous and varied opportunities to demonstrate the full extent of their achievement of the curriculum expectations (content standards) across all four categories of knowledge and skills.”
“Teachers will obtain assessment information through a variety of means, which may include formal and informal observations, discussions, learning conversations, questioning, conferences, homework, tasks done in groups, demonstrations, projects, portfolios, developmental continua, performances, peer and self-assessments, self-reflections, essays, and tests.”

OME, 2010, p.28

“Evidence of student achievement for evaluation is collected over time from three different sources – observations, conversations, and student products. Using multiple sources of evidence increases the reliability and validity of the evaluation of student learning.”

OME, 2010, p.39
Determining a Report Card Grade: Grades 1 to 12

Teachers will take various considerations into account before making a decision about the grade to be entered on the report card. The teacher will consider all evidence collected through observations, conversations, and student products (tests/exams, assignments for evaluation). The teacher will consider the evidence for all the tests/exams and assignments for evaluation that the student has completed or submitted, the number of tests/exams or assignments for evaluation that were not completed or submitted, and the evidence of achievement that is available for each overall expectation for a subject in a particular grade or course. In addition, the teacher will consider that some evidence carries greater weight than other evidence; for example, some performance tasks are richer and reveal more about students’ skills and knowledge than others. Teachers will weigh all evidence of student achievement in light of these considerations and will use their professional judgement to determine the student’s report card grade. The report card grade represents a student’s achievement of overall curriculum expectations, as demonstrated to that point in time.

Determining a report card grade will involve teachers’ professional judgement and interpretation of evidence and should reflect the student’s most consistent level of achievement, with special consideration given to more recent evidence.

It is worth noting, right from the start, that assessment is a human process, conducted by and with human beings, and subject inevitably to the frailties of human judgement. However crisp and objective we might try to make it, and however neatly quantifiable may be our “results”, assessment is closer to an art than a science. It is, after all, an exercise in human communication.

(Sutton, p. 2)